

Using Deep Learning to Automate Feature Modeling in Learning by

Observation: A Preliminary Study

Michael W. Floyd1, JT Turner1, and David W. Aha2
1Knexus Research Corporation; Springfield, Virginia; USA

2Navy Center for Applied Research in AI; Naval Research Laboratory (Code 5514); Washington, DC; USA

{michael.floyd, jt.turner}@knexusresearch.com | david.aha@nrl.navy.mil

Abstract

A primary advantage of learning by observation is that it
allows non-technical experts to transfer their skills to an
agent. However, this requires a general-purpose learning
agent that is not biased to any specific expert, domain, or
behavior. Existing domain-independent learning by
observation agents generalize a significant portion of
learning but still require some human intervention, namely,
modeling the agent’s inputs and outputs. We describe a
preliminary evaluation of using convolutional neural
networks to train a learning by observation agent without
explicitly defining the input features. Our approach uses the
agent’s raw visual inputs at two levels of granularity to
automatically learn input features using limited training data.
We describe an initial evaluation with scenarios drawn from
a simulated soccer domain.

1. Introduction

Learning by observation (LbO) agents are trained to perform

specific behaviors by observing an expert demonstrate the

behaviors. Whereas traditional methods for training an agent

may involve computer programming or knowledge

modeling competency, LbO only requires the expert to be

able to perform the behavior. By shifting the knowledge-

acquisition task from the expert to the agent itself, the agent

is provided with the opportunity to learn from a variety of

non-technical experts (e.g., healthcare professionals,

military commanders). However, for an agent to learn an

unknown behavior without any prior knowledge of the

expert or domain, it should learn in a general, non-biased

manner.

 We describe our preliminary approach to overcome the

limitations of existing general-purpose learning by

observation agents. Specifically, we remove the need for

input features to be manually modeled for each domain.

Instead, we use deep learning (DL) techniques (LeCun,

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bengio, and Hinton 2015) to learn a feature representation

from the agent’s raw visual inputs. Our approach trains two

DL models: one uses the agent’s complete visual inputs (i.e.,

everything it can currently observe) while the other uses

close-range visuals. The output of the two models are used

to select actions to perform in response to novel visual input

(i.e., what the agent can see as it attempts to replicate the

expert’s behavior).

 Our preliminary evaluation examines the feasibility of

our approach under common learning by observation

conditions. More specifically, these conditions include

limited observations (i.e., due to limited expert availability),

noisy or erroneous observations (e.g., errors by the expert or

incorrect observations by the agent), and partial

observability in the environment. We discuss related

research in Section 2, followed by a description of our

approach in Section 3. We evaluate our approach using

scenarios defined in a simulated soccer domain in Section 4,

and conclude with a discussion of future work in Section 5.

2. Related Work

Learning by observation has been used in a variety of

domains, including poker (Rubin and Watson 2010), Tetris

(Romdhane and Lamontagne 2008), first-person shooter

games (Thurau, Bauckhage, and Sagerer 2003), helicopter

control (Coates, Abbeel, and Ng 2008), robotic soccer

(Grollman and Jenkins 2007), simulated soccer (Floyd,

Esfandiari, and Lam 2008; Young and Hawes 2015), and

real-time strategy games (Ontañón et al. 2007). However,

most of these approaches were designed to learn in a single

domain, so the agents cannot be directly transferred to new

environments. Two domain-independent approaches for

LbO have been proposed (Gómez-Martín et al. 2010; Floyd

and Esfandiari 2011), both of which separate the agent’s

learning and reasoning from how it interacts with the

environment. This is advantageous because the observation,

learning, and reasoning components are general-purpose

and are not biased to any specific expert, behavior, or

domain. However, they both require the inputs (i.e., what

objects the agent can observe) and outputs (i.e., the actions

the agent can perform) to be modeled. Although the

modeling only needs to be performed once (i.e., before the

agent is deployed in a new environment), it still requires

some human intervention. Floyd, Bicakci, and Esfandiari

(2012) use a robot architecture that allows sensors to be

dynamically added or removed, with each change modifying

how the LbO agent represents inputs. While this does not

require human intervention before deployment in a new

domain, it does require human intervention for each new

type of sensor. Our approach differs in that it does not

require any human intervention to model the environment;

the only requirement is that the domain provides a visual

representation of the environment.

 Deep learning by observation is used for initial training

of AlphaGo (Silver et al. 2016). However, their learning

methodology has several limitations that may make it

unsuitable for some LbO tasks. First, they trained their

system with over 30 million observations. Large datasets

may be available for established games like Go, but less

popular games or novel behaviors may not have any existing

observation logs. Second, such a large dataset requires

months of training using datacenters composed of state-of-

the-art hardware. If models need to be trained rapidly with

limited computational resources, alternative learning

approaches are necessary. Finally, LbO is performed using

images of a turn-based board game. This minimizes the

influence of object occlusion (i.e., each Go piece is on its

own square), observation error (e.g., due to erroneous or

delayed responses by the expert), and provides the learning

agent with full observability. We instead examine the

feasibility of using DL for LbO tasks with limited

observations and limited training time in complex, real-time

domains.

 Our feature learning method is inspired by the deep

reinforcement learning work of Mnih et al. (2015). They use

raw visual inputs to learn to play a variety of Atari 2600

games. A primary difference from our work, in addition to

the amount of training time required to train their agents, is

they use reinforcement learning rather than LbO.

Reinforcement learning requires a reward function to be

defined for each domain (e.g., based on the game score),

thereby adding additional knowledge engineering before an

agent can be deployed in a new environment. Deep

reinforcement learning has also been used in simulated

soccer (Hausknecht and Stone 2016), with the reward

functions partially encoding the desired behavior (e.g., move

to ball reward and kick to goal reward). Although

reinforcement learning approaches are beneficial in that

they do not require labeled training data, they require

explicitly encoding reward functions which may bias the

agents to learning specific behaviors.

3. System Design

In real-time computer games, agents typically receive

sensory inputs in the form of periodic messages from the

game. These messages can include information about the

state of the game (e.g., elapsed time, score), the agent’s

properties (e.g., player number, team name, resource levels),

and observable objects. The observable objects are

particularly important for an agent’s decision making

because they provide information about the physical state of

the environment. For example, in a soccer game the

observable objects would include the location of the ball,

other players, goal nets, and boundary markers. While most

games explicitly define the set of observable objects in the

game (e.g., in a user manual), deploying an agent in a new

game still requires some level of knowledge engineering to

model these objects (i.e., converting the object definition

into a format that is understandable by the agent).

 To remove the need for modeling the observable objects,

our approach uses the raw visual representation of the

environment. For example, Figure 1 shows a player’s view

of the field in a soccer game. The left side of Figure 1 shows

the player’s entire field of vision, which we will refer to as

the full visual representation, whereas the right side shows

an enlarged view of the objects close to the player (i.e., a

fixed-sized region surrounding the player), which we refer

to as the zoomed visual representation. Both representations

contain only a partial view of the environment (i.e., what is

currently within the player’s field of vision, not the entire

field), with the full representation giving a larger view of the

field than the zoomed representation. The agent is not

explicitly given information about what is contained in the

images (e.g., it does not know that the white circle is the

soccer ball). Each of the visual representations is stored as a

256 × 256 RGB image.

Figure 1: The full visual representation (left) and zoomed visual

representation (right) in a simulated soccer game

 During observation, the learning agent records the

expert’s current visual inputs, both the full version 𝑉𝑓𝑢𝑙𝑙 and

zoomed version 𝑉𝑧𝑜𝑜𝑚𝑒𝑑, as well as the action 𝐴 performed

by the expert. Each input-action pair is stored in the

corresponding observation set, 𝒪𝑓𝑢𝑙𝑙 or 𝒪𝑧𝑜𝑜𝑚𝑒𝑑 (𝒪𝑓𝑢𝑙𝑙 ←
𝒪𝑓𝑢𝑙𝑙 ∪ 〈𝑉𝑓𝑢𝑙𝑙 , 𝐴〉 and 𝒪𝑧𝑜𝑜𝑚𝑒𝑑 ← 𝒪𝑧𝑜𝑜𝑚𝑒𝑑 ∪ 〈𝑉𝑧𝑜𝑜𝑚𝑒𝑑 , 𝐴〉).
 Learning is performed using two convolutional neural

networks (CNN) (Krizhevsky, Sutskever, and Hinton 2012),

with one trained on the full observations (i.e., 𝒪𝑓𝑢𝑙𝑙) and a

second trained on the zoomed observations (i.e., 𝒪𝑧𝑜𝑜𝑚𝑒𝑑).

These models represent the environment at two levels of

granularity and are used in combination to overcome limited

training data. For example, a nearby ball would be easier to

detect in the zoomed image because objects appear larger,

whereas the full image would be necessary to detect a goal

net on the other side of the field.

 We use a modification of the CaffeNet architecture (Jia et

al. 2014): an input layer, five convolution layers, five

pooling layers, two fully connected layers, and one softmax

loss layer. The network takes as input the pixel values using

all three color channels (i.e., red, green, and blue), resulting

in 256 × 256 × 3 inputs. The outputs of the network

represent the confidence in each of the possible actions (i.e.,

the confidence that each action should be selected in

response to the input image). In the soccer example, three

actions1 are used: kick, dash (i.e., move), and turn.

Rather than training the entire network, our approach uses

several layers that are pretrained on other data sources. The

convolution and pooling layers are extracted from an

existing network trained on ImageNet data (Jia et al. 2014),

whereas the fully connected layers and softmax loss layer

are trained using observation data. This approach has two

primary advantages. First, the pretrained ImageNet layers

can identify many visual features already (e.g., lines, curves,

shapes, objects). This removes the need to relearn these

common features. Second, the limited number of

observations makes it impractical to train the entire network.

Instead, the network learns how to use existing features to

classify the observation data. Although some layers are

pretrained, they do not bias the learning to any particular

domain or task since the ImageNet dataset contains millions

of images across a variety of topics (i.e., they are not soccer-

specific images). During learning, both the full and zoomed

models use an identical architecture but are trained

independently.

 During deployment, the learning agent attempts to

replicate the expert’s behavior and uses its own visual input

as input to the CNNs. For each input the agent receives, the

CNNs output six confidence outputs (i.e., both networks

output confidence values for all three actions). The

1 Soccer actions can also be parameterized (e.g., how hard to kick, turn
direction) but for simplicity our initial evaluation only examines action
classification.

maximum of the six confidence values is selected and its

associated action is used by the agent (i.e., the agent

performs the action in the environment). By using this

combined approach, the agent leverages the strengths of

each individual model during action selection. For example,

we would expect the zoomed model to perform better when

important objects are near the agent, whereas the full model

should perform better when information from the entire field

of vision is necessary. The primary goal of deployment is

for the agent to select similar actions to the expert when

presented with similar sensory inputs.

4. Evaluation

To evaluate the performance of our DL LbO system we

collected data from the RoboCup Simulation League

(RoboCup 2016). The matches were 5 vs 5 soccer games

with each player controlled by a scripted AI agent. The

specific agent used, Krislet, performs simple soccer

behaviors that involve locating the ball, running towards the

ball, and kicking the ball towards the opponent’s goal. In

each match, a single player was used as the expert (i.e., its

inputs and actions were recorded). The learning agent

observed 10 full soccer matches, with each game being 10

minutes in length. In total, this resulted in approximately

40,000 observations for both the full and zoomed

observation sets. However, the dataset is highly imbalanced

(73% dash, 26% turn, 1% kick), so a balanced training set

was created such that each action was equally represented

(1617 total observations in each observation set). A

balanced test set of 1029 observations was created by

observing additional soccer matches.

 The CNNs were trained using a base learning rate of 0.01,

polynomial rate decay with a power of 3, and 13,000

training iterations. Table 1 shows the F1 score (i.e., harmonic

mean of precision and recall, with 1.0 being the maximum

possible performance) when the test set was used to evaluate

the trained models. In addition to our combined approach,

we also evaluated performance when only the full or

zoomed model was used for action prediction.

Table 1: Results of trained CNNs on RoboCup test data

Model F1 Kick F1 Dash F1 Turn F1 Overall

Full 0.84 0.56 0.59 0.67

Zoomed 0.93 0.57 0.57 0.69

Combined 0.92 0.61 0.61 0.71

 These results, while preliminary, show that the agent can

learn a suitable model for action selection. While both the

full and zoomed models perform reasonably well, the best

performance was achieved when the Combined model was

used. This demonstrates that using multiple representations

of the visual data is preferable since these models have

varying strengths and weaknesses.

5. Conclusions and Future Work

We described a preliminary study of how well a learning by

observation agent can learn without explicitly modeling the

objects it observes. Our approach uses an expert’s raw visual

inputs at two levels of granularity to train a pair of CNNs.

In our study, the agent reproduced the expert’s action

selection decisions reasonably well in tasks drawn from a

simulated soccer domain. This indicates that even with

limited training observations, noisy observations, and partial

observability, it is possible to create an agent that can learn

an expert’s behavior without being provided an explicit

object model.

 Although our approach removes the need to model

observable objects, it still requires modeling the possible

actions. An area of future work will be to identify methods

for learning the actions an expert performs based on

observations. Additionally, we have only examined a single

two-model architecture (i.e., selecting the most confident

prediction from two CNNs). In future work we will examine

if added benefit can be achieved by training additional

models (e.g., other levels of granularity) or by modifying

how the model outputs are combined (e.g., inducing a

decision tree from their output). Our preliminary evaluation

has only measured the performance from a single

experiment from a single expert in a single domain. We plan

to perform a more thorough evaluation of the learning

performance involving numerous experimental trails. This

will not only allow us to show the benefit of our approach,

but it will also allow for a thorough comparison with other

LbO agents that learn in RoboCup (Floyd, Esfandiari, and

Lam 2008; Young and Hawes 2015). To determine whether

our approach is truly domain-independent, we plan to

conduct additional studies with different experts in different

environments. Finally, we plan to examine how this

approach can be extended to learn from state-based experts

since the RoboCup expert we examined is purely reactive

(i.e., the expert’s action is based entirely on its current visual

inputs).

References

Coates, A., Abbeel, P., and Ng, A. Y. 2008. Learning for control
from multiple demonstrations. In Proceedings of the 25th
International Conference on Machine Learning, 144-151.
Helsinki, Finland: ACM.

Floyd, M. W., Bicakci, M. V. and Esfandiari, B. 2012. Case-based
learning by observation in robotics using a dynamic case

representation. In Proceedings of the 25th International Florida
Artificial Intelligence Research Society Conference, 323-328.
Marco Island, USA: AAAI Press.

Floyd, M. W., and Esfandiari, B. 2011. A case-based reasoning
framework for developing agents using learning by observation. In
Proceedings of the 23rd IEEE International Conference on Tools
with Artificial Intelligence, 531-538. Boca Raton, USA: IEEE
Computer Society Press.

Floyd, M. W., Esfandiari, B., and Lam, K. 2008. A case-based
reasoning approach to imitating RoboCup players. In Proceedings
of the 21st International Florida Artificial Intelligence Research
Society Conference, 251-256. Coconut Grove, USA: AAAI Press.

Gómez-Martín, P. P., Llansó, D., Gómez-Martín, M. A., Ontañón,
S., and Ram, A. 2010. MMPM: A generic platform for case-based
planning research. In Proceedings of the International Conference
on Case-Based Reasoning Workshops, 45-54. Alessandria, Italy.

Grollman, D. H., and Jenkins, O. C. 2007. Learning robot soccer
skills from demonstration. In Proceedings of the IEEE
International Conference on Development and Learning, 276-281.
London, UK: IEEE Press.

Hausknecht, M., and Stone, P. (2016) Deep reinforcement learning
in parameterized action space. In Proceedings of the International
Conference on Learning Representations. San Juan, Puerto Rico.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R. B., Guadarrama, S., and Darrell, T. 2014. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the ACM
International Conference on Multimedia, 675-678. Orlando, USA:
ACM.

LeCun, Y., Bengio, Y. and Hinton, G. E. 2015. Deep learning.
Nature, 521, 436-444.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012.
Classification with deep convolutional neural networks. In
Proceedings of the 26th Annual Conference on Neural Information
Processing Systems, 1106-1114. Lake Tahoe, USA.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.
2015. Human-level control through deep reinforcement learning.
Nature, 518, 529-533.

Ontañón, S., Mishra, K., Sugandh, N., and Ram, A. 2007. Case-
based planning and execution for real-time strategy games. In
Proceedings of the 7th International Conference on Case-Based
Reasoning, 164-178. Belfast, UK: Springer.

RoboCup. 2016. RoboCup Official Site. Retrieved from
[http://www.robocup.org]

Romdhane, H., and Lamontagne, L. 2008. Forgetting reinforced
cases. In Proceedings of the 9th European Conference on Case-
Based Reasoning, 474-486. Trier, Germany: Springer.

Rubin, J., and Watson, I. 2010. Similarity-based retrieval and
solution re-use policies in the game of Texas Hold’em. In
Proceedings of the 18th International Conference on Case-Based
Reasoning, 465-479. Alessandria, Italy: Springer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D. 2016. Mastering the game of Go with
deep neural networks and tree search. Nature, 529, 484-503.

Thurau, C., Bauckhage, C., and Sagerer, G. 2003. Combining self
organizing maps and multilayer perceptrons to learn bot-behaviour
for a commercial game. In Proceedings of the 4th International
Conference on Intelligent Games and Simulation, 119-123.
London, UK: EUROSIS.

Young, J., and Hawes, N. 2015. Learning by observation using
qualitative spatial relations. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, 745-
751. Istanbul, Turkey: ACM.

